skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jaskaran Grover, Daniel Vedova"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Small-scale robots have the potential to impact many areas of medicine and manufacturing including targeted drug delivery, telemetry and micromanipulation. This paper develops an algorithmic framework for regulating external magnetic fields to induce motion in millimeter-scale robots in a viscous liquid, to simulate the physics of swimming at the micrometer scale. Our approach for planning motions for these swimmers is based on tools from geometric mechanics that provide a novel means to design periodic changes in the physical shape of a robot that propels it in a desired direction. Using these tools, we are able to derive new motion primitives for generating locomotion in these swimmers. We use these primitives for optimizing swimming efficiency as a function of its internal magnetization and describe a principled approach to encode the best magnetization distribu- tions in the swimmers. We validate this procedure experimentally and conclude by implementing these newly computed motion primitives on several magnetic swimmer prototypes that include two-link and three-link swimmers. 
    more » « less